The Neuroanatomical Organization of Projection Neurons Associated with Different Olfactory Bulb Pathways in the Sea Lamprey, Petromyzon marinus
نویسندگان
چکیده
Although there is abundant evidence for segregated processing in the olfactory system across vertebrate taxa, the spatial relationship between the second order projection neurons (PNs) of olfactory subsystems connecting sensory input to higher brain structures is less clear. In the sea lamprey, there is tight coupling between olfaction and locomotion via PNs extending to the posterior tuberculum from the medial region of the olfactory bulb. This medial region receives peripheral input predominantly from the accessory olfactory organ. However, the axons from olfactory sensory neurons residing in the main olfactory epithelium extend to non-medial regions of the olfactory bulb, and the non-medial bulbar PNs extend their axons to the lateral pallium. It is not known if the receptive fields of the PNs in the two output pathways overlap; nor has the morphology of these PNs been investigated. In this study, retrograde labelling was utilized to investigate the PNs belonging to medial and non-medial projections. The dendrites and somata of the medial PNs were confined to medial glomerular neuropil, and dendrites of non-medial PNs did not enter this territory. The cell bodies and dendrites of the non-medial PNs were predominantly located below the glomeruli (frequently deeper in the olfactory bulb). While PNs in both locations contained single or multiple primary dendrites, the somal size was greater for medial than for non-medial PNs. When considered with the evidence-to-date, this study shows different neuroanatomical organization for medial olfactory bulb PNs extending to locomotor control centers and non-medial PNs extending to the lateral pallium in this vertebrate.
منابع مشابه
Projections from the accessory olfactory organ into the medial region of the olfactory bulb in the sea lamprey (Petromyzon marinus): a novel vertebrate sensory structure?
Although four different primary olfactory pathways have been described in tetrapod vertebrates, polymorphic olfactory sensory neurons comingle in the olfactory epithelium and project axons into separate bulbar regions in teleost fish. However, spatially segregated neurons may exist in the peripheral olfactory organ of lampreys, extant representatives of ancestral jawless vertebrates. In lamprey...
متن کاملGlomerular territories in the olfactory bulb from the larval stage of the sea lamprey Petromyzon marinus.
The goal of this study was to investigate the spatial organization of olfactory glomeruli and of substances relevant to olfactory sensory neuron activity in the developing agnathan, the sea lamprey Petromyzon marinus. A 45-kD protein immunoreactive to G(olf), a cAMP-dependent olfactory G protein, was present in the ciliary fraction of sea lamprey olfactory epithelium and in olfactory sensory ne...
متن کاملOlfactory sensory neurons in the sea lamprey display polymorphisms.
The sea lamprey (Petromyzon marinus) is an ancient jawless fish phyletically removed from modern (teleost) fishes. It is an excellent organism in the study of olfaction due to its accessible olfactory pathway, which is susceptible to manipulation, and its important location in the evolution of vertebrates. There are many similarities in the olfactory systems of all fishes, and they also share c...
متن کاملThe spatial relationship of gamma-aminobutyric acid (GABA) neurons and gonadotropin-releasing hormone (GnRH) neurons in larval and adult sea lamprey, Petromyzon marinus.
In this study we examined the spatial relationship of GABA-containing and GnRH-containing neurons by immunocytochemistry and in situ hybridization in larval and adult brains of sea lamprey, Petromyzon marinus. In immunocytochemical studies, GABA-containing neurons were detected early in lamprey development, by day 20 post-fertilization. At this time point, one population of GABA-containing neur...
متن کاملThe olfactory system of migratory adult sea lamprey (Petromyzon marinus) is specifically and acutely sensitive to unique bile acids released by conspecific larvae
Larval sea lamprey inhabit freshwater streams and migrate to oceans or lakes to feed after a radical metamorphosis; subsequently, mature adults return to streams to spawn. Previous observations suggested that lamprey utilize the odor of conspecific larvae to select streams for spawning. Here we report biochemical and electrophysiological evidence that this odor is comprised of two unique bile a...
متن کامل